If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x-12.75=0
a = 1; b = 10; c = -12.75;
Δ = b2-4ac
Δ = 102-4·1·(-12.75)
Δ = 151
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-\sqrt{151}}{2*1}=\frac{-10-\sqrt{151}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+\sqrt{151}}{2*1}=\frac{-10+\sqrt{151}}{2} $
| 0.18y+0.09(y+6000)=1620 | | (3)x-1=4x | | 8t+1/3=t+9/6+t-7/6 | | b4=2.86 | | 2f=15 | | 3x+27/6+x+9/7=9 | | 4.15−3y=−3 | | 5(x-13)-7(x-9)=12 | | 19k-11=20k | | 1-5x=3x+7 | | 16c-9=-19+17c | | 4x-3.2=7.6 | | -1+4f=-10+3f | | -4p=5p-9 | | 3t+4=26 | | 7w-10=9+10w-1 | | 3r+8=5r | | s+10=-10+3s | | 8t+32=17 | | 10-2u=4-3u | | 9=180(1÷5k-1÷4k) | | 7+(3x+5)-(x+3)=6x-1 | | -3x-(2x+3)=-6-3(2x-4)-3x | | X/9-x/10=-1 | | -9t+18=-60+4t | | 2/7÷3/2=x | | 15−3y=−3 | | x^2-7x+12.75=0 | | 3-4b=13 | | 3-4b=14 | | 3(x-4)=6(2x+1) | | 13/20=60/p |